Microscale reservoir effects on microbial sulfur isotope fractionation

نویسندگان

  • Stilianos Louca
  • Sean A. Crowe
چکیده

Microbial sulfate reduction can impart strong sulfur isotope fractionation by preferentially using the lighter 32SO2! 4 over the heavier 34SO 4 . The magnitude of fractionation depends on a number of factors, including ambient concentrations of sulfate and electron donors. Sulfur isotope compositions in sedimentary rocks thus facilitate reconstruction of past environmental conditions, such as seawater sulfate concentrations, primary productivity, organic carbon burial, and sulfur fluxes into or out of the ocean. Knowing the processes that regulate the magnitude of sulfur isotope fractionation is necessary for the correct interpretation of the geological record, but so far theoretical work has focused mostly on internal cellular processes. In sulfatelimited environments, like low sulfate lakes and the Archean ocean, microbial sulfate reduction can lead to sulfate depletion in the water column and an enrichment in isotopically heavy sulfate. This reservoir effect in turn mutes the fractionation expressed in the water column and ultimately preserved in sediments relative to the biologically induced fractionation. Here we use mathematical modeling to show that similar reservoir effects can also appear at the microscale in close proximity to sulfate-reducing cells. These microscale reservoir effects have the potential to modulate sulfur isotope fractionation to a considerable degree, especially at low (micromolar) sulfate concentrations. As a result, background sulfate concentrations, sulfate reduction rates, and extracellular ion diffusion rates can influence the fractionation expressed even if the physiologically induced fractionation is constant. This has implications for the interpretation of biogenic sulfur isotope fractionations expressed in the geological record, because the correct estimation of the environmental conditions that would promote these fractionations requires consideration of microscale reservoir effects. We discuss these implications, and demonstrate the integration of microscale reservoir effects into geobiological models for low sulfate marine water columns, as perceived for the Archean ocean. ! 2017 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantification and isotopic analysis of intracellular sulfur metabolites in the dissimilatory sulfate reduction pathway

Microbial sulfate reduction exhibits a normal isotope effect, leaving unreacted sulfate enriched in S and producing sulfide that is depleted in S. However, the magnitude of sulfur isotope fractionation is quite variable. The resulting changes in sulfur isotope abundance have been used to trace microbial sulfate reduction in modern and ancient ecosystems, but the intracellular mechanism(s) under...

متن کامل

Influence of Phosphorus and Cell Geometry on the Fractionation of Sulfur Isotopes by Several Species of Desulfovibrio during Microbial Sulfate Reduction

We investigated the influence of organic substrates and phosphate concentration on the rates of dissimilatory microbial sulfate reduction and the 34S/32S isotopic fractionation produced by several Desulfovibrio species. Our experiments corroborate the previously reported species-specific correlation between sulfur isotope fractionation and cell-specific sulfate reduction rates. We also identify...

متن کامل

Isotopic insights into microbial sulfur cycling in oil reservoirs

Microbial sulfate reduction in oil reservoirs (biosouring) is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM) is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a prom...

متن کامل

Physiology of Multiple Sulfur Isotope Fractionation during Microbial Sulfate Reduction

Microbial sulfate reduction (MSR) utilizes sulfate as an electron acceptor and produces sulfide that is depleted in heavy isotopes of sulfur relative to starting sulfate. The fractionation of S-isotopes is commonly used to trace the biogeochemical cycling of sulfur in nature, but a mechanistic understanding of factors that control the range of isotope fractionation is still lacking. This thesis...

متن کامل

Sulfur Isotope Fractionations in Biological Systems: Insight into the Proterozoic Biosphere

Title of Document: SULFUR ISOTOPE FRACTIONATIONS IN BIOLOGICAL SYSTEMS: INSIGHT INTO THE PROTEROZOIC BIOSPHERE David T. Johnston, Ph.D. 2007 Directed By: Professor J. Farquhar, Department of Geology and ESSIC This study focuses on developing a framework for interpreting isotopic fractionations in the four stable sulfur isotopes, with a special focus on microbial effects. Calculations of low tem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017